Capture of auditory motion by vision is represented by an activation shift from auditory to visual motion cortex.
نویسندگان
چکیده
The brain is capable of integrating motion information arising from visual and auditory input. Such integration between sensory modalities can aid one another and helps to stabilize the motion percept. However, if motion information differs between sensory modalities, it can also result in an illusory auditory motion percept. This phenomenon is referred to as the cross-modal dynamic capture (CDC) illusion. We used functional magnetic resonance imaging to investigate whether early visual and auditory motion areas are involved in the generation of this illusion. Among the trials containing conflicting audiovisual motion, we compared the trials in which CDC occurred to those in which it did not and used a region of interest approach to see whether the auditory motion complex (AMC) and the visual motion area hMT/V5+ were affected by this illusion. Our results show that CDC reduces activation in bilateral auditory motion areas while increasing activity in the bilateral hMT/V5+. Interestingly, our data show that the CDC illusion is preceded by an enhanced activation that is most dominantly present in the ventral intraparietal sulcus. Moreover, we assessed the effect of motion coherency, which was found to enhance activation in bilateral hMT/V5+ as well as in an area adjacent to the right AMC. Together, our results show that audiovisual integration occurs in early motion areas. Furthermore, it seems that the cognitive state of subjects before stimulus onset plays an important role in the generation of multisensory illusions.
منابع مشابه
Selective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملA direct demonstration of functional specialization within motion-related visual and auditory cortex of the human brain
BACKGROUND Physiological studies of the macaque brain have shown that there is a large expanse of visual cortex, the V5 complex, which is specialized for visual motion, and that several areas within V5 are specialized for different kinds of visual motion. In continuing work on motion-related visual cortex, we wished to chart the specialized visual motion areas in the human brain and to determin...
متن کاملA comparison of visual and auditory motion processing in human cerebral cortex.
Visual and auditory motion information can be used together to provide complementary information about the movement of objects. To investigate the neural substrates of such cross-modal integration, functional magnetic resonance imaging was used to assess brain activation while subjects performed separate visual and auditory motion discrimination tasks. Areas of unimodal activation included the ...
متن کاملAn automated time and hand motion analysis based on planar motion capture extended to a virtual environment
In the context of industrial engineering, the predetermined time systems (PTS) play an important role in workplaces because inefficiencies are found in assembly processes that require manual manipulations. In this study, an approach is proposed with the aim to analyze time and motions in a manual process using a capture motion system embedded to a virtual environment. Capture motion system trac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 11 شماره
صفحات -
تاریخ انتشار 2008